Laplacian Spectrum of Weakly Quasi-threshold Graphs

نویسندگان

  • R. B. Bapat
  • A. K. Lal
  • Sukanta Pati
چکیده

In this paper we study the class of weakly quasi-threshold graphs that are obtained from a vertex by recursively applying the operations (i) adding a new isolated vertex, (ii) adding a new vertex and making it adjacent to all old vertices, (iii) disjoint union of two old graphs, and (iv) adding a new vertex and making it adjacent to all neighbours of an old vertex. This class contains the class of quasi-threshold graphs. We show that weakly quasi-threshold graphs are precisely the comparability graphs of a forest consisting of rooted trees with each vertex of a tree being replaced by an independent set. We also supply a quadratic time algorithm in the the size of the vertex set for recognizing such a graph. We completely determine the Laplacian spectrum of weakly quasi-threshold graphs. It turns out that weakly quasi-threshold graphs are Laplacian integral. As a corollary we obtain a closed formula for the number of spanning trees in such graphs. A conjecture of Grone and Merris asserts that the spectrum of the Laplacian of any graph is majorized by the conjugate of the degree sequence of the graph. We show that the conjecture holds for cographs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalized laplacian spectrum of two new types of join graphs

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

متن کامل

Laplacian Energy of a Fuzzy Graph

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

متن کامل

A Simple Linear-Time Recognition Algorithm for Weakly Quasi-Threshold Graphs

Weakly quasi-threshold graphs form a proper subclass of the well-known class of cographs by restricting the join operation. In this paper we characterize weakly quasi-threshold graphs by a finite set of forbidden subgraphs: the class of weakly quasi-threshold graphs coincides with the class of {P4, co-(2P3)}-free graphs. Moreover we give the first linear-time algorithm to decide whether a given...

متن کامل

On Laplacian energy of non-commuting graphs of finite groups

‎Let $G$ be a finite non-abelian group with center $Z(G)$‎. ‎The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$‎. ‎In this paper‎, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups‎..

متن کامل

THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2008